Learning Person-Person Interaction in Collective Activity Recognition

نویسندگان

  • Xiaobin Chang
  • Wei-Shi Zheng
  • Jianguo Zhang
چکیده

Collective activity is a collection of atomic activities (individual person's activity) and can hardly be distinguished by an atomic activity in isolation. The interactions among people are important cues for recognizing collective activity. In this paper, we concentrate on modeling the person-person interactions for collective activity recognition. Rather than relying on hand-craft description of the person-person interaction, we propose a novel learning-based approach that is capable of computing the class-specific person-person interaction patterns. In particular, we model each class of collective activity by an interaction matrix, which is designed to measure the connection between any pair of atomic activities in a collective activity instance. We then formulate an interaction response (IR) model by assembling all these measurements and make the IR class specific and distinct from each other. A multitask IR is further proposed to jointly learn different person-person interaction patterns simultaneously in order to learn the relation between different person-person interactions and keep more distinct activity-specific factor for each interaction at the same time. Our model is able to exploit discriminative low-rank representation of person-person interaction. Experimental results on two challenging data sets demonstrate our proposed model is comparable with the state-of-the-art models and show that learning person-person interactions plays a critical role in collective activity recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Latent Constituents for Recognition of Group Activities in Video

The collective activity of a group of persons is more than a mere sum of individual person actions, since interactions and the context of the overall group behavior have crucial influence. Consequently, the current standard paradigm for group activity recognition is to model the spatiotemporal pattern of individual person bounding boxes and their interactions. Despite this trend towards increas...

متن کامل

بهبود بازشناسی چهره با یک تصویر از هر فرد به روش تولید تصاویر مجازی توسط شبکه‌های عصبی

This paper deals with the problem of face recognition from a single image per person by producing virtual images using neural networks. To this aim, the person and variation information are separated and the associated manifolds are estimated using a nonlinear neural information processing model. For increasing the number of training samples in neural classifier, virtual images are produced for...

متن کامل

Hierarchical Deep Temporal Models for Group Activity Recognition

In this paper we present an approach for classifying the activity performed by a group of people in a video sequence. This problem of group activity recognition can be addressed by examining individual person actions and their relations. Temporal dynamics exist both at the level of individual person actions as well as at the level of group activity. Given a video sequence as input, methods can ...

متن کامل

Learning People’s Appearances from Multiple Views

In this document, a system for recognizing persons in images is proposed. It is based on learning the outer appearance of a person from image sequences. In order to accomplish this, a statistical model of every person, we want to recognize, is being learnt. Positive training data is acquired by using a distributed camera network. Video data is labeled automatically to minimize user interaction....

متن کامل

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2015